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Solution to Assignment 13

No need to hand in any problem.

Section 9.3 no. 1(b)(d), 7, 8(a)(c), 14.

1. (b) Denote xn := 1
n+1 > 0. Note xn+1 − xn = −1

n(n+1) < 0, i.e. {xn} is decreasing

and limn xn = limn
1

n+1 = 0. By Alternating Series Test, this series is convergent.
However,

∞∑
n=1

∣∣ (−1)n+1xn
∣∣ =

∞∑
n=1

∣∣∣∣ (−1)n+1

n+ 1

∣∣∣∣ =
∞∑
n=1

1

n+ 1
≥ 1

2

∞∑
n=1

1

n
=∞ .

Hence it converges conditionally.

(d) We have (
log x

x

)′
=

1− log x

x2

which is negative for x ≥ e. It follows that beginning from n ≥ 3 {log n/n}∞n=3 is
decreasing. By Alternating Series Test the series

∑∞
n=3(−1)n+1 log n/n is convergent,

so is
∑∞

n=1(−1)n+1 log n/n. On the other hand, it is clear that
∑

n=1 log n/n = ∞,
so this series is conditionally convergent.

7. Let p, q be positive integer. Using the fact that log x/xα → 0 as x→∞ for any α > 0, we
have

lim
n→∞

(log n)p

nq
= 0.

Moreover, for large x > 0,

d

dx

( log x

x
p
q

)
=
p− q log x

px
q
p
+1

< 0.

Therefore (log n)p/nq is decreasing for large n. By the Alternating Series Test,
∑

(−1)n(log n)p/nq

converges.

8. (a) Denote xn := nn

(n+1)n+1 = 1
(1+1/n)n

· 1
n+1 . Since n 7→

(
1 + 1

n

)n
is increasing (we learned

this in 2050 when e was introduced),

xn+1 =
1

(1 + 1/(n+ 1))n+1 ·
1

n+ 2
≤ 1

(1 + 1/n)n
· 1

n+ 1
= xn .

Now

limxn = lim
1

(1 + 1/n)n
· 1

n+ 1
=

1

e
· 0 = 0 .

By the Alternating Series Test,
∑

(−1)n nn

(n+1)n+1 converges.

Alternatively, observe that
∑
yn =

∑
(−1)n/(n+ 1) is convergent and xn = nn/(n+

1)n = (1 + 1/n)n is increasing (to e). By Abel’s test, this series is convergent.
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(c) As lim
∣∣∣ (−1)n (n+1)n

nn

∣∣∣ = e 6= 0, this series cannot be convergent.

14. By Abel’s Lemma, we have

m∑
n+1

1

k
ak =

1

m
sm −

1

n+ 1
sn +

m∑
n+1

(
1

k
− 1

k + 1

)
sk .

We have (
1

k
− 1

k + 1

)
sk ≤

1

k(k + 1)
Mkr ≤M 1

k2−r
.

As r < 1, 2 − r > 1 and
∑

k k
r−2 < ∞. Hence

∑m
n+1 k

r−2 → 0 as n,m → ∞. By
comparison,

m∑
n+1

(
1

k
− 1

k + 1

)
sk → 0 , as n,m→∞ .

On the other hand,∣∣∣∣ 1

m
sm −

1

n+ 1
sn

∣∣∣∣ ≤M (
1

m1−r +
1

n1−r

)
→ 0 as n,m→∞ .

We conclude that
∑
an/n is convergent.

Section 9.4 no. 5, 6(a)(c), 11, 12.

5. Let L = limn→∞ |an|/|an+1|. If |x | < L, limn→∞

∣∣∣ an+1xn+1

anxn

∣∣∣ = limn→∞

∣∣∣ an+1

an

∣∣∣ · |x | <
1
L · L = 1.

By the limit form of Ratio Test,
∑
anx

n converges absolutely if |x | < L.

If |x | > L, limn→∞

∣∣∣ an+1xn+1

anxn

∣∣∣ = limn→∞

∣∣∣ an+1

an

∣∣∣ · |x | > 1
L · L = 1. By the limit of Ratio

Test,
∑
anx

n diverges if |x | > L. By Cauchy-Hadamard theorem, R = L.

If L = 0, then for |x | > 0, lim
∣∣∣ an+1xn+1

anxn

∣∣∣ = lim
∣∣∣ an+1

an

∣∣∣ · |x | = |x | lim ∣∣∣ an+1

an

∣∣∣ =∞.

By ratio test,
∑
anx

n diverges if |x | > 0. By Cauchy-Hadamard theorem, R = 0 = L.

If L =∞, then for x ∈ R, lim
∣∣∣ an+1xn+1

anxn

∣∣∣ = lim
∣∣∣ an+1

an

∣∣∣ · |x | = |x | lim ∣∣∣ an+1

an

∣∣∣ = 0.

By ratio test,
∑
anx

n converges if |x | <∞. By Cauchy-Hadamard theorem, R =∞ = L.

Example: Consider the power series 1 + x2 + x4 + · · · . Here a2n = 1 but a2n+1 = 0, so
limn→∞ |an/an+1| does not exist but ρ = lim supn→∞(|an|1/n) = 1 and R = 1.

6. (a)

lim
n→∞

|an|
1
n = lim

n→∞

1

n
= 0 .

Hence the radius of convergence is ∞.
(c)

lim

∣∣∣∣ an
an+1

∣∣∣∣ = lim
nn(n+ 1)!

(n+ 1)n+1n!
= lim

(
1 +

1

n

)−n
= e−1 .

Hence the radius of convergence is e−1.
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11. Use Taylor expansion at point x = 0, we have

f(x) =

∞∑
k=0

f (k)(0)

k!
xk +

f (n+1)(c)

(n+ 1)!
xn+1 ,

for |x| < r and 0 < |c| < |x|. By assumption∣∣∣∣∣ f (n+1)(c)

(n+ 1)!x(n+1)

∣∣∣∣∣ ≤ Brn+1

(n+ 1)!
.

Since rn+1/(n+ 1)!→ 0 as n→∞,
∑∞

n=0 f
(n)(0)xn/n! converges to f(x) on |x| < r.

12. We did this exercise before. f ′(0) = limh→0
e−1/h2

h , set t = 1/h, we have

f ′(0) = lim
t→∞

tet
2
,

which clearly tends to 0. Assume that f (k)(0) = 0, we want to show that f (k+1)(0) = 0
We note that

f ′(x) = 2x−3e−1/x
2 ≡ P3(1/x)e−1/x

2

for x 6= 0, where P3 is a polynomial with degree 3. We want to show that f (n)(x) =
P3n(1/x)e−1/x

2
for x 6= 0. Prove it by induction:

Assume that f (k)(x) = P3k(1/x)e−1/x
2

for x 6= 0, then

f (k+1)(x) = 2x−3P3k(1/x)e−1/x
2

+ P3k−1(1/x)e−1/x
2 ≡ P3(k+1)(1/x)e−1/x

2
,

for x 6= 0. Using this formula, it is easy to show that f (n)(0) = 0 for all n. Hence this
function is not given by its Taylor expansion about x = 0.

Supplementary Exercise

1. Let f(x) =
∑

n anx
n whose radius of convergence is positive. Show that

an =
f (n)(0)

n!
.

Solution. Let R > 0 be the radius of convergence of f . By Differentiation Theorem, f
is smooth and termwise differentiation is valid on (−R,R). Therefore, we have

f (k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)anx
n−k .

Taking x = 0 we conclude f (k)(0) = akk!.

2. (a) Let
∑

n anx
n be a power series which is convergent at non-zero x0. Show that it

converges uniformly on [−r, r] for every r ∈ [0, |x0|).
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(b) Deduce that if two power series
∑

n anx
n and

∑
n bnx

n are equal on some (−r, r), r >
0. They are identical.

Solution. (a) Let R be the radius of convergence of this power series. If |x0| > R, then∑
n anx

n is divergent according to Cauchy-Hadamard Theorem. Now, as it converges at
x0, we must have |x0| ≤ R, so by C-H Theorem, the power series converges uniformly on
[−r, r] for every r < |x0|.
(b) Let

∑
n anx

n and
∑

n bnx
n be the two power series that are equal on (−r, r), r > 0.

That means both series are uniformly convergent on [−r1, r1] for every r1 < r. Let f(x) =∑
n anx

n =
∑

n bnx
n. By (a), we must have an = f (n)(0)/n! = bn for all n.


